Antibiosis of Blue-Stain Fungi Using Plant Growth-Promoting Rhizobacteria

 $^{1}\mathrm{Pratima}$ Devkota, $^{2}\mathrm{Joseph}$ W. Kloepper, and $^{1}\mathrm{Lori}$ G. Eckhardt

¹Forest Health Cooperative, Forest Health Dynamics Laboratory, School of Forestry and Wildlife Sciences, Auburn University ²Department of Entomology and Plant Pathology, Auburn University, Auburn University

Forest Health Dynamics Laboratory

Plant Growth-Promoting Rhizobacteria (PGPR) Biological control Direct— Antagonism Indirect-Induced systemic resistance Pathogen Path

Forest Health Dynamics Laborator

Introduction

- Use of microbes to control diseases is becoming more common
- An environmentally friendly approach
- There is evidence of induced systemic protection to fusiform rust in loblolly pine by PGPR (Enebak 2000)

and of Francisco and Methalists Coloresce Andrews Hall

Forest Health Dynamics Laborators

Objective

 To understand if different Plant Growth Promoting Rhizobcterial (PGPR) strains will inhibit the growth of blue-stain fungi

Hypothesis

• Some of the well characterized PGPR strains will exhibit *in vitro* antibiosis against the blue-stain fungi

Forest Health Dynamics Laboratory

Methodology

- PGPR strains pre-identified using 16s rDNA sequencing methods
- 30 strains of PGPR used

nool of Forestry and Wildlife Sciences, Auburn Unive

Forest Health Dynamics Laboratory

Methodology

Malt Extract Agar plate with holes filled with Tryptic Soya Agar on four sides

 $10^8\,$ colony-forming units (CFU) of PGPR

Fungal disc inoculated at the center of agar plate Fungi-LT, GH, GA, and LP

and of Francisco and Miller Colonian Auditor

Results PGPR inhibited the growth of the fungi No sporulation around the inhibition zone Fungal growth towards the control side was not inhibited PGPR Inhibition No Inhibition (Control) School of Forestry and Wildlife Science. Auburn University

Results • Out of 30 tested strains - 26 and 11 significantly inhibited L. procerum and L. terebrantis - 26 and 10 significantly inhibited G. alacris and G. huntii

rest Health Dynamics Laborator

Objective

• To understand if PGPR strains will induce the systemic resistance of loblolly pine to blue-stain fungi

Hypothesis

• PGPR will induce the resistance of the loblolly pine to *L. terebrantis* and *G. huntii*

Forest Heal	th Dynar	nics Laborator

Methodology

Inoculation of 10⁸ CFU/ml of 3 different rhizobacteria by soil drenching

After 2 weeks- Inoculation of *L. terebrantis* and *G. huntii*

8 weeks following inoculation - Seedling biomass, lesion, height, and RCD change

Lof Corostor and Mildlife Sciences Auburn III

orest Health Dynamics Laboratory

Conclusion

- Most of the studied PGPR strains inhibited the growth of the fungi
- Fungal sporulation was inhibited
- Study demonstrates that PGPR produce some metabolites which inhibit the growth of the fungi

ol of Forestry and Wildlife Sciences, Auburn Ur

Forest Health Dynamics Laborato

Acknowledgement

Dr. Lori G. Eckhardt
Dr. Joseph W. Kloepper
Dr. Ke Liu
Forest Health Dynamics Laboratory
Department of Plant Pathology and Entomology
My Labmates

5